Thursday, August 30, 2018

Northbound Networks Zodiac GX

Mininet is widely used to emulate software defined networks (SDNs). Mininet flow analytics describes how standard sFlow telemetry, from Open vSwitch used by Mininet emulate the network, provides feedback to an SDN controller, allowing the controller to adapt the network to changing traffic, for example, to mitigate a distributed denial of service (DDoS) attack.

Northbound Networks Zodiac GX is an inexpensive open source software based switch that is ideal for experimenting with software defined networking (SDN) in a physical network setting. The small fanless package makes the switch an attractive option for desktop use. The Zodiac GX is also based on Open vSwitch, making it easy to take SDN control strategies developed on Mininet.
Enabling sFlow on the Zodiac GX is easy, navigate to the System>Startup page and add the following line to the end of the startup script (before the exit 0 line):
ovs-vsctl -- --id=@sflow create sflow agent=$OVS_BR target=$IP_CONTROLLER_1 sampling=100 polling=10 -- set bridge $OVS_BR sflow=@sflow
Reboot the switch for the changed to take effect.

Use sflowtool to verify that sFlow is arriving at the controller host and to examine the contents of the telemetry stream. Running sflowtool using Docker is a simple alternative to building the software from sources:
docker run --rm -p 8008:8008 -p 6343:6343/udp sflow/sflowtool
The text output from sflowtool can be piped into scripts to perform basic sFlow analysis.
A graphical sFlow analyzer performs the analysis tasks for you. The screen shot above shows sFlowTrend, a free sFlow analyzer that displays traffic trends. The software can be downloaded and installed or run using Docker:
docker run --rm -p 6343:6343/udp -p 8087:8087 -p 8443:8443 sflow/sflowtrend
The sFlowTrend charts update every minute. This is generally fast enough for human consumption, but real-time, up to the second, visibility is critical for SDN use cases.
The screen shot from Flow Trend shows an up to the second view of traffic. The spike in traffic is due to a 4K video being streamed from YouTube. The following command runs the software:
docker run --rm -p 6343:6343/udp -p 8008:8008 sflow/flow-trend
Flow Trend is an application running on the sFlow-RT real-time analytics platform.
Applications running on the sFlow-RT platform deliver real-time visibility to SDN, DevOps and Orchestration stacks, enabling new classes of performance aware application such as load balancing, DDoS mitigation, and workload placement.

RYU provides a framework that can be used to develop SDN applications in Python. For example, the following command runs the simple learning bridge application that ships with RYU:
docker run -it --rm -p 6633:6633 osrg/ryu ryu-manager --verbose ryu/ryu/app/simple_switch_13.py
As soon as the switch connects to the controller, you should see a flurry of events as the controller programs flows on the Zodiac GX switch.

Faucet is an SDN controller for production networks implemented using RYU. Before we can use Faucet, we need to gather basic OpenFlow information from the switch.
$ ssh -t admin@10.0.0.230 "sudo ovs-ofctl show ovslan"
admin@10.0.0.230's password: 
Password: 
OFPT_FEATURES_REPLY (xid=0x2): dpid:000044d1fa6291b2
n_tables:254, n_buffers:256
capabilities: FLOW_STATS TABLE_STATS PORT_STATS QUEUE_STATS ARP_MATCH_IP
actions: output enqueue set_vlan_vid set_vlan_pcp strip_vlan mod_dl_src mod_dl_dst mod_nw_src mod_nw_dst mod_nw_tos mod_tp_src mod_tp_dst
 1(eth0.1): addr:44:d1:fa:62:91:b2
     config:     0
     state:      STP_FORWARD
     current:    1GB-FD AUTO_NEG
     speed: 1000 Mbps now, 0 Mbps max
 2(eth0.2): addr:44:d1:fa:62:91:b2
     config:     0
     state:      STP_FORWARD
     current:    1GB-FD AUTO_NEG
     speed: 1000 Mbps now, 0 Mbps max
 3(eth0.3): addr:44:d1:fa:62:91:b2
     config:     0
     state:      STP_FORWARD
     current:    1GB-FD AUTO_NEG
     speed: 1000 Mbps now, 0 Mbps max
 4(eth0.4): addr:44:d1:fa:62:91:b2
     config:     0
     state:      STP_FORWARD
     current:    1GB-FD AUTO_NEG
     speed: 1000 Mbps now, 0 Mbps max
 5(eth0.5): addr:44:d1:fa:62:91:b2
     config:     0
     state:      STP_FORWARD
     current:    1GB-FD AUTO_NEG
     speed: 1000 Mbps now, 0 Mbps max
 LOCAL(ovslan): addr:44:d1:fa:62:91:b2
     config:     0
     state:      0
     current:    1GB-FD AUTO_NEG
     speed: 1000 Mbps now, 0 Mbps max
OFPT_GET_CONFIG_REPLY (xid=0x4): frags=normal miss_send_len=0
Connection to 10.0.0.230 closed.
Update August 30, 2018: The only piece of information needed to construct the faucet config file below is the switch dpid. The Zodiac GX uses the MAC address of the switch as the dpid, so you can simply read the MAC address printed on a label on the bottom of the switch.
Now create a directory called faucet that contains the initial Faucet configuration file, faucet.yaml:
vlans:
    office:
        vid: 100
        description: "office network"

dps:
    zodiac:
        dp_id: 0x000044d1fa6291b2
        hardware: "ZodiacGX"
        interfaces:
            1:
                name: "eth0.1"
                description: "port1"
                native_vlan: office
            2:
                name: "eth0.2"
                description: "port2"
                native_vlan: office
            3:
                name: "eth0.3"
                description: "port3"
                native_vlan: office
            4:
                name: "eth0.4"
                description: "port4"
                native_vlan: office
            5:
                name: "eth0.5"
                description: "port5"
                native_vlan: office
            0xfffffffe:
                name: "ovslan"
                description: "local"
                native_vlan: office
Now run Faucet:
docker run -it --rm -v $PWD/faucet/:/etc/faucet/ -v $PWD/faucet/:/var/log/faucet/ -p 6633:6653 -p 9302:9302 faucet/faucet
As soon as the switch connects to the controller, you should see events logged to the faucet.log file in the same directory as the faucet.yaml configuration file.

Faucet Documentation describes how to extend the configuration to include firewall, routing, segmentation, and network function virtualization (NFV) rules to the configuration.

The next step is integrating sFlow analytics with the controller. Writing Applications describes how write sFlow-RT applications use REST API and embedded JavaScript API. The document includes Python examples that could be embedded in RYU controller applications. Alternatively, sFlow-RT's embedded HTTP client can be used to push control actions to an SDN controller, see ONOS measurement based control for an example.

The sFlow telemetry stream contains detailed Open vSwitch performance metrics in addition to flow and interface counter data. The sFlow-RT analytics pipeline can be programmed to generate and push statistics to time series databases and dashboards, see Prometheus and Grafana and InfluxDB and Grafana.

Exporting events using syslog describes how sFlow-RT can be programmed to detect and report on traffic anomalies, sending events to Security Information and Event Management (SIEM) tools, using Splunk and Logstash as examples.

The sflow/sflow-rt Docker image provides a convenient means of developing and deploying sFlow-RT applications alongside the SDN controllers demonstrated in this article.

An important benefit of sFlow telemetry is that it decouples monitoring from the control plane. You are free to change SDN controllers, use distributed routing / switching protocols, move between network operating systems, or build your own control plane while maintaining the same level of visibility. Industry standard sFlow is widely supported by vendors, including: A10, Aerohive, ALUe, Allied Telesis, Arista, Aruba, Big Switch, Broadcom, Cisco, Cumulus, Dell, D-Link, Edge-Core, Extreme, F5, Fortinet, Huawei, IP Infusion, Juniper, Mellanox, Netgear, OpenSwitch, Pica8, Proxim, Quanta, SMC, ZTE, and ZyXEL.

Monday, August 20, 2018

RDMA over Converged Ethernet (RoCE)

RDMA over Converged Ethernet is a network protocol that allows remote direct memory access (RDMA) over an Ethernet network. One of the benefits running RDMA over Ethernet is the visibility provided by standard sFlow instrumentation embedded in the commodity Ethernet switches used to build data center leaf and spine networks where RDMA is most prevalent.

The sFlow telemetry stream includes packet headers, sampled at line rate by the switch hardware. Hardware packet sampling allows the switch to monitor traffic at line rate on all ports, keeping up with the high speed data transfers associated with RoCE.

The diagram above shows the packet headers associated with RoCEv1 and RoCEv2 packets. Decoding the InfiniBand Global Routing Header (IB GRH) and InfiniBand Base Transport Header (IB BTH) allows an sFlow analyzer to report in detail on RoCE traffic.
The sFlow-RT real-time analytics engine recently added support for RoCE by decoding InfiniBand Global Routing and InfiniBand Base Transport fields. The screen capture of the sFlow-RT Flow-Trend application shows traffic associated with an RoCEv2 connection between two hosts, 10.10.2.22 and 10.10.2.52. The traffic consists of SEND and ACK messages exchanged as part of a reliable connection (RC).

The standard sFlow instrumentation provides comprehensive network wide visibility into RoCE and all other applications sharing the network resources. Real-time visibility is an essential part of automating networks, providing the feedback needed to ensure that resources are efficiently allocated and rapidly identifying overloaded resources so that remediation action can be taken before significant service degradation occurs.

Thursday, July 19, 2018

ExtremeXOS 22.5.1 adds support Broadcom ASIC table utilization statistics

ExtremeXOS 22.5.1 is now available! describes added support in sFlow for "New data structures to support reporting on hardware/table utilization statistics." The feature is available on Summit X450-G2, X460-G2, X670-G2, X770, and ExtremeSwitching X440-G2, X870, X620, X690 series switches.

Figure 1 shows the packet processing pipeline of a Broadcom ASIC. The pipeline consists of a number of linked hardware tables providing bridging, routing, access control list (ACL), and ECMP forwarding group functions. Operations teams need to be able to proactively monitor table utilizations in order to avoid performance problems associated with table exhaustion.

Broadcom's sFlow specification, sFlow Broadcom Switch ASIC Table Utilization Structures, leverages the industry standard sFlow protocol to offer scaleable, multi-vendor, network wide visibility into the utilization of these hardware tables.

The following output from the open source sflowtool command line utility shows the raw table measurements (this is in addition to the extensive set of measurements already exported via sFlow by ExtremeXOS):
bcm_asic_host_entries 4
bcm_host_entries_max 8192
bcm_ipv4_entries 0
bcm_ipv4_entries_max 0
bcm_ipv6_entries 0
bcm_ipv6_entries_max 0
bcm_ipv4_ipv6_entries 9
bcm_ipv4_ipv6_entries_max 16284
bcm_long_ipv6_entries 3
bcm_long_ipv6_entries_max 256
bcm_total_routes 10
bcm_total_routes_max 32768
bcm_ecmp_nexthops 0
bcm_ecmp_nexthops_max 2016
bcm_mac_entries 3
bcm_mac_entries_max 32768
bcm_ipv4_neighbors 4
bcm_ipv6_neighbors 0
bcm_ipv4_routes 0
bcm_ipv6_routes 0
bcm_acl_ingress_entries 842
bcm_acl_ingress_entries_max 4096
bcm_acl_ingress_counters 68
bcm_acl_ingress_counters_max 4096
bcm_acl_ingress_meters 18
bcm_acl_ingress_meters_max 8192
bcm_acl_ingress_slices 3
bcm_acl_ingress_slices_max 8
bcm_acl_egress_entries 36
bcm_acl_egress_entries_max 512
bcm_acl_egress_counters 36
bcm_acl_egress_counters_max 1024
bcm_acl_egress_meters 18
bcm_acl_egress_meters_max 512
bcm_acl_egress_slices 2
bcm_acl_egress_slices_max 2
The sflowtool output is useful for troubleshooting and is easy to parse with scripts.

A convenient way to run sflowtool is to use Docker:
docker run -p 6343:6343/udp sflow/sflowtool

Ethernet Fabric Visibility

Ethernet Fabrics: Extreme Networks ExtremeFabric
Leaf and spine fabrics are challenging to monitor. The fabric spreads traffic across all the switches and links in order to maximize bandwidth. Unlike traditional hierarchical network designs, where a small number of links can be monitored to provide visibility, a leaf and spine network has no special links or switches where running CLI commands or attaching a probe would provide visibility. Even if it were possible to attach probes, the effective bandwidth of a leaf and spine network can be as high as a Petabit/second, well beyond the capabilities of current generation monitoring tools.

Fabric View solves the visibility challenge by using the industry standard sFlow instrumentation built into data center switches. Fabric View represents the fabric as if it were a single large chassis switch, treating each leaf switch as a line card and the spine switches as the backplane. The result is an intuitive tool that is easily understood by anyone familiar with traditional networks.

A demonstration can be run using Docker:
docker run --entrypoint /sflow-rt/run_demo.sh -p 8008:8008 sflow/fabric-view
Access the web interface on port 8008.
The first chart shows the largest TCP/UDP flows traversing the fabric (calculated from a continues stream of packet samples received from all the switches in the fabric). The chart updates every second, providing a real-time view of traffic crossing the fabric.
The last two charts are based on the hardware/table utilization statistics that are now implemented in ExtremeXOS, trending the maximum utilization of each table across all the switches in the fabric.

sFlow-RT

FabricView is one of a number of applications developed for sFlow-RT. Examples include: DDoS mitigation, Internet routing using top of rack switches, and other articles on this blog.
The sFlow-RT analytics engine receives a continuous telemetry stream from sFlow Agents embedded in network devices, hosts and applications and converts them into actionable metrics, accessible through APIs. Applications can be external, written in any language that supports HTTP/REST calls, or internal, using sFlow-RT's embedded JavaScript/ECMAScript.

Monday, July 16, 2018

Visualizing real-time network traffic flows at scale

Particle has been released on GitHub, https://github.com/sflow-rt/particle. The application is a real-time visualization of network traffic in which particles flow between hosts arranged around the edges of the screen. Particle colors represent different types of traffic.

Particles provide an intuitive representation of network packets transiting the network from source to destination. The animation slows time so that the particle takes 10 seconds (instead of milliseconds) to transit the network. Groups of particles traveling the same path represent flows of packets between the hosts. Particle size and frequency are used to indicate the intensity magnitude of the traffic flowing on a path.

Particles don't follow straight lines, instead following quadratic Bézier curves around the center of the screen. Warping particle paths toward the center of the screen ensures that all paths are of similar length and visible - even if the start and end points are on the same axis.

The example above is from a site with over 500 network switches carrying hundreds of Gigabits of traffic. Internet, Customer, Site and Datacenter hosts have been assigned to the North, East, South and West sides respectively.
The screen is updated 60 times per second for smooth animation. Active flow metrics are updated every second. Hovering over the screen freezes the animation, highlights the nearest particle, and displays details.

To try out the software, first create a configuration file to label axes and assign addresses for your network.
particle.axisN=Internet
particle.cidrN=0.0.0.0/0
particle.axisS=Site
particle.cidrS=10.1.1.0/24,10.1.2.0/24
particle.axisE=Datacenter
particle.cidrE=10.2.0.0/16
particle.asisW=Remote
particle.cidrW=10.3.0.0/16
The above, particle.conf file, provides an example.

The simplest way to run the software is to use the pre-built Docker image.
docker run -p 8008:8008 -p 6343:6343/udp \
-v $PWD/particle.conf:/sflow-rt/particle.conf \
-e "RTPROP=-Dsystem.propertyFiles=particle.conf" \
sflow/particle
Access the web interface on port 8008.
The Docker image also contains a random simulation of flows to demonstrate the software:
docker run -e "RTPROP=-Dparticle.demo=yes" \
-p 6343:6343/udp -p 8008:8008 sflow/particle
This particle visualization was inspired by experiments with Vizceral, see Real-time traffic visualization using Netflix Vizceral. Vizceral focuses on interactions between layered microservices.

Visualizing network traffic unique challenges that needed to be addressed. For example, in these examples the North, Internet, axis (0.0.0.0/0) represents over 4 billion hosts - a number far greater than the number of pixels available on the screen. Instead of trying to represent each host individually, hosts are assigned a position proportional to their location in the range. For example, host 120.0.0.0 is assigned a position half way along the axis. Assigning fixed positions to each host ensures that traffic between the hosts will always take the same path across the screen, making it easier to recognize patterns and identify changes.

Chances are you have network equipment that supports sFlow telemetry since the standard is widely supported by vendors, including: A10, Aerohive, ALUe, Allied Telesis, Arista, Aruba, Big Switch, Cisco, Cumulus, Dell, D-Link, Edge-Core, Extreme, F5, Fortinet, Huawei, IP Infusion, Juniper, Netgear, OpenSwitch, Pica8, Proxim, Quanta, SMC, ZTE, and ZyXEL. Give Particle a try and see how traffic flows on your network.

Wednesday, July 11, 2018

sFlow available on Juniper PTX series routers


sFlow functionality introduced on the PTX1000 and PTX10000 platforms—Starting in Junos OS Release 18.2R1, the PTX1000 and PTX10000 routers support sFlow, a network monitoring protocol for high-speed networks. With sFlow, you can continuously monitor tens of thousands of ports simultaneously. The mechanism used by sFlow is simple, not resource intensive, and accurate.  - New and Changed Features

The recent article, sFlow available on Juniper MX series routers, describes how Juniper is extending sFlow support to include routers to provide visibility across their entire range of switching and routing products.

Universal support for industry standard sFlow as a base Junos feature reduces the operational complexity and cost of network visibility for enterprises and service providers. Real-time streaming telemetry from campus switches, routers, and data center switches, provides centralized, real-time, end-to-end visibility needed to troubleshoot, optimize, and account for network usage.

Analytics software is a critical factor in realizing the full benefits of sFlow monitoring. Choosing an sFlow analyzer discusses important factors to consider when selecting from the range of open source and commercial sFlow analysis tools.

Monday, April 9, 2018

SDKLT

Logical Table Software Development Kit (SDKLT) is a new, powerful, and feature rich Software Development Kit (SDK) for Broadcom switches. SDKLT provides a new approach to switch configuration using Logical Tables.

Building the Demo App describes how to get started using a simulated Tomahawk device. Included, is a CLI that can be used to explore tables. For example, the following CLI output shows the attributes of the sFlow packet sampling table:
BCMLT.0> lt list -d MIRROR_PORT_ENCAP_SFLOW
MIRROR_PORT_ENCAP_SFLOW
  Description: The MIRROR_PORT_ENCAP_SFLOW logical table is used to specify
               per-port sFlow encapsulation sample configuration.
  11 fields (1 key-type field):
    SAMPLE_ING_FLEX_RATE
        Description: Sample ingress flex sFlow packet if the generated sFlow random
                     number is greater than the threshold. A lower threshold leads to
                     higher sampling frequency.
    SAMPLE_EGR_RATE
        Description: Sample egress sFlow packet if the generated sFlow random number is
                     greater than the threshold. A lower threshold leads to
                     higher sampling frequency.
    SAMPLE_ING_RATE
        Description: Sample ingress sFlow packet if the generated sFlow random number is
                     greater than the threshold. A lower threshold leads to
                     higher sampling frequency.
    SAMPLE_ING_FLEX_MIRROR_INSTANCE
        Description: Enable to copy ingress flex sFlow packet samples to the ingress
                     mirror member using the sFlow mirror instance configuration.
    SAMPLE_ING_FLEX_CPU
        Description: Enable to copy ingress flex sFlow packet samples to CPU.
    SAMPLE_ING_MIRROR_INSTANCE
        Description: Enable to copy ingress sFlow packet samples to the ingress
                     mirror member using the sFlow mirror instance configuration.
    SAMPLE_ING_CPU
        Description: Enable to copy ingress sFlow packet samples to CPU.
    SAMPLE_ING_FLEX
        Description: Enable to sample ingress port-based flex sFlow packets.
    SAMPLE_EGR
        Description: Enable to sample egress port-based sFlow packets.
    SAMPLE_ING
        Description: Enable to sample ingress port-based sFlow packets.
    PORT_ID
        Description: Logical port ID.
SDKLT is a part of the OpenNSL suite, which makes it possible for the development of open network operating system projects, including: Open Network Linux, OpenSwitch, and SONiC.
The network operating system bridges the gap between applications (BGP, SNMP, sFlow, etc.) and the low level hardware capabilities accessed through the SDK. For example, OpenSwitch describes how the open source Host sFlow agent uses Control Plane Services (CPS) and Open Compute Project (OCP) Switch Abstraction Interface (SAI) to configure hardware packet sampling via vendor specific SDKs (such as OpenNSL).

Friday, April 6, 2018

sFlow available on Juniper MX series routers

sFlow support on MX Series devices—Starting in Junos OS Release 18.1R1, you can configure sFlow technology (as a sFlow agent) on a MX Series device, to continuously monitor traffic at wire speed on all interfaces simultaneously. The sFlow technology is a monitoring technology for high-speed switched or routed networks.  - New and Changed Features

Understanding How to Use sFlow Technology for Network Monitoring on a MX Series Router lists the following benefits of sFlow Technology on a MX Series Router:
  • sFlow can be used by software tools like a network analyzer to continuously monitor tens of thousands of switch or router ports simultaneously.
  • Since sFlow uses network sampling (forwarding one packet from ‘n’ number of total packets) for analysis, it is not resource intensive (for example processing, memory and more). The sampling is done at the hardware application-specific integrated circuits (ASICs) and hence it is simple and more accurate.
With the addition of the MX series routers, Juniper now supports sFlow across its entire product range:
Universal support for industry standard sFlow as a base Junos feature reduces the operational complexity and cost of network visibility for enterprises and service providers. Real-time streaming telemetry from campus switches, routers, and data center switches, provides centralized, real-time, end-to-end visibility needed to troubleshoot, optimize, and account for network usage.
Analytics software is a critical factor in realizing the full benefits of sFlow monitoring. Choosing an sFlow analyzer discusses important factors to consider when selecting from the range of open source and commercial sFlow analysis tools.