Thursday, November 14, 2013

SC13 large flow demo

For the duration of the SC13 conference, Denver will host of one of the most powerful and advanced networks in the world - SCinet. Created each year for the conference, SCinet brings to life a very high capacity network that supports the revolutionary applications and experiments that are a hallmark of the SC conference. SCinet will link the Colorado Convention Center to research and commercial networks around the world. In doing so, SCinet serves as the platform for exhibitors to demonstrate the advanced computing resources of their home institutions and elsewhere by supporting a wide variety of bandwidth-driven applications including supercomputing and cloud computing. - SCinet

The screen shot is from a live demonstration of network-wide large flow detection and tracking using standard sFlow instrumentation build into switches in the SCInet network. Currently multiple vendor's switches, 1,223 ports, with speeds up to 100Gbit/s, are sending sFlow data.
Note: The network is currently being set up, traffic levels will build up and reach a peak next week during the SC13 show (Nov. 17-22). Visit the demonstration site next week to see live traffic on one of the worlds busiest networks: http://inmon.sc13.org/dash/
The sFlow-RT real-time analytics engine is receiving the sFlow and centrally tracking large flows. The HTML5 web pages poll the analytics engine every half second for the largest 100 flows in order to update the charts, which represent large flows as follows:
  • Dot an IP address
  • Circle a logical grouping of IP addresses
  • Line width represents bandwidth consumed by flow
  • Line color identifies traffic type
Real-time detection and tracking of large flows has many applications in software defined networking (SDN), including: DDoS mitigation, large flow load balancing, and multi-tenant performance isolation. For more information, see Performance Aware SDN

3 comments:

  1. Peter, this would make a pretty awesome time-lapse video!

    ReplyDelete
  2. How many sFlow-RT instance were used to support this?

    ReplyDelete
    Replies
    1. Just one. It's running on a four vCPU VM with 400MB of RAM allocated to the sFlow-RT Java process. The Java process is currently using around 3% CPU, but traffic levels are low right now - they will be a lot higher next week when the show starts.

      Delete